Bregman Distances, Totally Convex Functions, and a Method for Solving Operator Equationsin Banach Spaces

نویسنده

  • DAN BUTNARIU
چکیده

The aim of this paper is twofold. First, several basic mathematical concepts involved in the construction and study of Bregman type iterative algorithms are presented from a unified analytic perspective. Also, some gaps in the current knowledge about those concepts are filled in. Second, we employ existing results on total convexity, sequential consistency, uniform convexity and relative projections in order to define and study the convergence of a new Bregman type iterative method of solving operator equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Iterative Methods for a Finite Family of Relatively Nonexpansive Mappings in Banach Spaces

Using the convex combination based on Bregman distances due to Censor and Reich, we define an operator from a given family of relatively nonexpansive mappings in a Banach space. We first prove that the fixed-point set of this operator is identical to the set of all common fixed points of themappings. Next, using this operator, we construct an iterative sequence to approximate common fixed point...

متن کامل

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

The Bregman distance, approximate compactness and convexity of Chebyshev sets in Banach spaces

We present some sufficient conditions ensuring the upper semicontinuity and the continuity of the Bregman projection operator Π g C and the relative projection operator P g C in terms of the D-approximate (weak) compactness for a nonempty closed set C in a Banach space X . We next present certain sufficient conditions as well as equivalent conditions for the convexity of a Chebyshev subset of a...

متن کامل

Hybrid Proximal-Point Methods for Systems of Generalized Equilibrium Problems and Maximal Monotone Operators in Banach Spaces

In this paper, by using Bregman’s technique, we introduce and study the hybrid proximal-point methods for finding a common element of the set of solutions to a system of generalized equilibrium Problems and zeros of a finite family of maximal monotone operators in reflexive Banach spaces. Strong convergence results of the proposed hybrid proximal-point algorithms are also established under some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005